Probabilistic map-matching using particle filters

نویسندگان

  • Kira Kempinska
  • Toby Davies
  • John Shawe-Taylor
چکیده

Increasing availability of vehicle GPS data has created potentially transformative opportunities for tra c management, route planning and other location-based services. Critical to the utility of the data is their accuracy. Map-matching is the process of improving the accuracy by aligning GPS data with the road network. In this paper, we propose a purely probabilistic approach to map-matching based on a sequential Monte Carlo algorithm known as particle filters. The approach performs map-matching by producing a range of candidate solutions, each with an associated probability score. We outline implementation details and thoroughly validate the technique on GPS data of varied quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Particle Filters for Vehicle Positioning using Road Maps

This paper presents a numerical approach to the mapmatching problem. The proposed solution is based on a sequential Monte Carlo method, so called particle filtering. This algorithm can be adapted for implementation on real-time car navigation systems using a low-cost MEMS heading rate sensor and standard vehicle speed sensor installed in the car as dead-reckoning sensors. The algorithm reliabil...

متن کامل

Review Article Improvement Schemes for Indoor Mobile Location Estimation: A Survey

Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of resear...

متن کامل

Finding Location Using a Particle Filter and Histogram Matching

This paper considers the problem of mobile robot localization. The localization is done using a particle filter built on a highly accurate probabilistic model of laser scan and a histogram based representation of sensor readings. A histogram matching exploits sensor data coming from the laser and data obtained from the existing map. Experimental results indicate feasibility of the proposed appr...

متن کامل

Memory-Efficient Gridmaps in Rao-Blackwellized Particle Filters for SLAM using Sonar Range Sensors

Simultaneous Localization And Mapping (SLAM) has been an important field of research in the robotics community in recent years. A successful class of SLAM algorithms are Rao-Blackwellized Particle Filters (RBPF), where the particles approximate the pose belief distribution, while each particle contains a separate map. So far, RBPF with landmark based environment representations as well as gridm...

متن کامل

Map-Based Indoor Pedestrian Navigation Using an Auxiliary Particle Filter

In this research, a non-infrastructure-based and low-cost indoor navigation method is proposed through the integration of smartphone built-in microelectromechanical systems (MEMS) sensors and indoor map information using an auxiliary particle filter (APF). A cascade structure Kalman particle filter algorithm is designed to reduce the computational burden and improve the estimation speed of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016